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ABSTRACT
We study local magnetohydrodynamical (MHD) instabilities of differential rotation in magnetised, stably-stratified
regions of stars and planets using a Cartesian Boussinesq model. We consider arbitrary latitudes and general shears
(with gravity direction misaligned from this by an angle ϕ), to model radial (ϕ = 0), latitudinal (ϕ = ±90◦), and
mixed differential rotations, and study both non-diffusive (including magnetorotational, MRI, and Solberg-Høiland
instabilities) and diffusive instabilities (including Goldreich-Schubert-Fricke, GSF, and MRI with diffusion). These
instabilities could drive turbulent transport and mixing in radiative regions, including the solar tachocline and the
cores of red giant stars, but their dynamics are incompletely understood. We revisit linear axisymmetric instabilities
with and without diffusion and analyse their properties in the presence of magnetic fields, including deriving stability
criteria and computing growth rates, wavevectors and energetics, both analytically and numerically. We present
a more comprehensive analysis of axisymmetric local instabilities than prior work, exploring arbitrary differential
rotations and diffusive processes. The presence of a magnetic field leads to stability criteria depending upon angular
velocity rather than angular momentum gradients. We find MRI operates for much weaker differential rotations than
the hydrodynamic GSF instability, and that it typically prefers much larger lengthscales, while the GSF instability is
impeded by realistic strength magnetic fields. We anticipate MRI to be more important for turbulent transport in the
solar tachocline than the GSF instability when ϕ > 0 in the northern (and vice versa in the southern) hemisphere,
though the latter could operate just below the convection zone when MRI is absent for ϕ < 0.
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1 INTRODUCTION

The evolution of angular momentum (AM) and its pro-
file in a star is one of the most fundamental – yet poorly
understood – aspects of stellar evolution (e.g. Maeder &
Meynet 2000; Maeder 2009). Many unsolved problems in so-
lar physics, including the development, and maintenance of,
the differentially-rotating solar convection zone, tachocline,
and solar dynamo, as well as those of other stars, all likely
require a better understanding of the mechanisms that shape
the AM transport and hence profile of star throughout its
life-cycle. Current stellar evolution codes are too simplistic
and do not correctly model the evolution of AM, as is evi-
dent from red and sub-giant stars for example, whose core-
envelope differential rotations inferred from asteroseismology
are not well explained by existing stellar evolution models
(e.g. Aerts et al. 2019).

Some of the most important proposed mechanisms for
AM transport and turbulent mixing in stars are magnetohy-
drodynamical (MHD) instabilities, which have not yet been
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fully explored (e.g. Zahn 1974; Maeder & Meynet 2000) and
their nonlinear evolution is particularly poorly understood.
Here we analyse local MHD instabilities in stellar radia-
tive zones, focussing on the stability properties of stably-
stratified, differentially-rotating and magnetised shear flows
– relevant, for example, to modelling the solar tachocline or
the cores of red giant stars. Radiative zones are often thought
of as quiescent regions, but they have already been shown to
exhibit a range of local and global MHD instabilities that
transport AM and lead to turbulent mixing. Examples of
relevant instabilities in such regions include the hydrody-
namic Goldreich-Schuburt-Fricke (GSF) instability, a double-
diffusive centrifugal instability of differential rotation enabled
by thermal diffusion (Goldreich & Schubert 1967; Fricke 1968;
Knobloch & Spruit 1982; Rashid et al. 2008; Barker et al.
2019, 2020; Park et al. 2020, 2021; Dymott et al. 2023; Tri-
pathi et al. 2024), and the more violent instabilities excited
when the Solberg-Høiland (SH) criteria for non-diffusive in-
stabilities are violated (Solberg 1936; Høiland 1941). Not only
do these linear instabilities lead to turbulence with enhanced
transport properties in their nonlinear evolution, they also
exhibit the emergence of long-term anisotropic quasi-stable
structures such as ‘zonal jets’ (or layering in the AM) (Barker
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et al. 2020; Dymott et al. 2023). The complex anisotropic na-
ture of the long-term evolution of many of these instabilities
suggests that modelling them in one-dimensional stellar evo-
lution models simply as a one-dimensional diffusive process is
probably insufficient. Indeed, in certain cases turbulent trans-
port is known to be anti-diffusive.

The presence of even a weak magnetic field is known to
drastically modify the stability of differentially-rotating flows
(e.g. Chandrasekhar 1961; Acheson & Gibbons 1978; Bal-
bus & Hawley 1991). Stability criteria with magnetic fields
tend to involve angular velocity gradients – which typically
require much weaker differential rotations to predict insta-
bility – rather than the angular momentum gradients with-
out fields; this is because the field can act as a tether be-
tween fluid particles and allow them to exchange angular
momentum. The magneto-rotational instability (MRI) is one
such manifestation when a weak magnetic field is introduced
into a differentially-rotating flow (e.g. Chandrasekhar 1961;
Acheson & Gibbons 1978; Balbus & Hawley 1991; Balbus &
Hawley 1994; Balbus 1995; Spruit 1999; Ogilvie 2007; Balbus
2009; Oishi et al. 2020; Vasil et al. 2024). This can operate
and drive turbulence even in many hydrodynamically stable
flows. Its operation in stably-stratified stellar interiors (i.e. ra-
diation zones) in the presence of diffusive processes has been
studied in some prior works (Menou et al. 2004; Menou &
Le Mer 2006; Parfrey & Menou 2007; Guilet & Müller 2015;
Caleo et al. 2016; Caleo & Balbus 2016), but much remains
to be explored of its linear properties, and especially its non-
linear evolution in stars. Guilet & Müller (2015) performed
linear analysis and numerical simulations of the MRI in a lo-
cal stably-stratified model of a proto-neutron star (with extra
neutrino cooling). Our approach is broadly similar to theirs
but we will study arbitrary local differential rotations. Global
simulations in spherical geometry of the MRI (or Tayler in-
stability, which is a current-driven instability that is also
present in these) in stellar radiative zones have also been per-
formed (Jouve et al. 2015; Gaurat et al. 2015; Meduri et al.
2019; Jouve et al. 2020), though these kinds of studies may
not adequately capture all of the possible local instabilities.
We choose to adopt a local model here, partly for simplicity
and because such models are appropriate for studying small-
scale MHD instabilities, and also because they can explore
more realistic parameter regimes with numerical simulations
(particularly with regards to smaller diffusivities) than global
models would allow in nonlinear regimes.

Here we introduce magnetic fields to build directly upon
Barker et al. (2019, hereafter paper 1), Barker et al. (2020,
hereafter paper 2) and Dymott et al. (2023, hereafter paper
3) that studied hydrodynamical instabilities in a local Carte-
sian representation of a small patch of a stably-stratified,
differentially-rotating stellar or planetary radiation zone. A
global “shellular” (radial) differential rotation varying only
with spherical radius was considered at the equator in pa-
per 1 (and an axisymmetric turbulence closure model was
developed and verified for this case by Tripathi et al. 2024),
and at a general latitude in paper 2. In paper 3, we gener-
alised the model to consider an arbitrary differential rotation
profile, which varies with both radius and latitude. Here we
incorporate a poloidal magnetic field into this more general
model. Following a similar approach, we perform an axisym-
metric linear stability analysis here, which we will follow with
complementary three-dimensional nonlinear numerical simu-

lations (that can consider the effects of more general field
orientations) in future work. Our primary goals are to under-
stand the properties of the GSF instability in the magnetic
system, as well as the operation the MRI, and to determine
their potential roles in angular momentum transport, chem-
ical mixing, and dynamo generation. Our linear study is re-
lated to the one undertaken by Latter & Papaloizou (2018)
for the Vertical Shear Instability in astrophysical discs (e.g.
Urpin & Brandenburg 1998; Nelson et al. 2013; Barker &
Latter 2015), which is the name used for the GSF instability
in that context.

The goal of this paper is to gain insights into how the
presence of a locally uniform magnetic field affects the linear
properties of local instabilities of differential rotation in stel-
lar and planetary radiative zones. We do this by investigating
the axisymmetric linear stability of the system (that we de-
fine in § 2), both analytically and numerically in § 3–6. We
determine how the properties of the unstable modes depend
on magnetic field strength B0 and magnetic Prandtl num-
ber Pm = ν/η (the ratio of kinematic viscosity ν to ohmic
diffusivity η). We will analyse the energetics of the various
instabilities in our model and derive several new results be-
fore applying them to the solar tachocline and red giant stars
in § 7.

2 LOCAL CARTESIAN MODEL

2.1 The model and governing equations

We follow papers 1–3 and employ a local Cartesian model
to study small-scale instabilities of differential rotation in
a stably-stratified region of a star or planet. We use coor-
dinates (x, y, z), where y is the local azimuthal coordinate,
and x and z are two coordinates in the meridional plane.
We adopt the Bousinessq approximation (Spiegel & Veronis
1960), which is expected to be valid for the local instabil-
ities we study (see e.g. Barker et al. 2019, for justification
regarding studying GSF modes). The differential rotation is
represented by a linear shear flow U0 = −Sxey, which in gen-
eral varies with both spherical radius r and latitude β, and
we have defined x to be aligned with the axis of variation of
U0. S is the constant value locally of −ϖ|∇Ω(r, β)| (where
Ω(r, β) is the angular velocity), and ϖ is the distance from
the axis of rotation (cylindrical radius). The local effective
gravity vector eg = (cosϕ, 0, sinϕ) defines the angle ϕ, and
the rotation axis lies along the vector Ω̂ = (sinΛ, 0, cosΛ),
thereby defining the angle Λ. We note that both of these are
defined locally with respect to x. The latitude angle is then
given by β = Λ + ϕ, which measures the angle between the
equator Ω̂

⊥
= (cosΛ, 0,− sinΛ), and the spherical radial di-

rection eg. Our model is illustrated in Fig. 1, which shows
the various angles involved.

We build upon the hydrodynamical studies of papers 1-3 by
introducing a uniform static background poloidal magnetic
field B0 = B0B̂ that is in equilibrium, satisfying the local
analogue of Ferraro’s law of isorotation (Ferraro 1937). For
this flow to be in equilibrium in the meridional/poloidal (x, z)
plane, it must lie along z with1 B̂ = (0, 0, 1), being always

1 The MHD equations are invariant under the transformation
B → −B, so there is no loss of generality in considering B0 ≥ 0.
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Diffusive rotational instabilities 3

Figure 1. Illustration of the various vectors and corresponding
angles in the (x, z)-plane. The cylindrical radial direction (along
the equator) is Ω̂

⊥
, and the rotation axis is Ω̂. The local radial

direction is (approximately) along the effective gravity direction
eg , which is misaligned with respect to the x-direction when ϕ

is nonzero. The magnetic field in linear theory is always along
z (therefore perpendicular to the shear in x), which is the only
direction in the meridional plane in which an equilibrium exists.

perpendicular to variation of the shear flow U0 locally. This
permits a well-defined equilibrium state even if it may compli-
cate interpretation of our model because the field is not purely
radial or horizontal, depending on the value of ϕ. The field is
radial if ϕ = ±90◦ and it is latitudinal if ϕ = 0◦,±180◦. We
do not consider toroidal/azimuthal fields in our local analy-
sis, which are typically thought to be dominant in the solar
tachocline, because they play no role for linear incompress-
ible axisymmetric perturbations. A toroidal field would af-
fect non-axisymmetric perturbations (e.g. Ogilvie & Pringle
1996) but analysing those (and their non-modal growth) is
less straightforward, and it is likely that axisymmetric insta-
bilities are the fastest growing ones in any case (e.g. Latter
& Papaloizou 2018). Since we have adopted a local Carte-
sian model, as appropriate to explore small-scale instabilities
in stellar radiative zones, we do not capture the effects of
azimuthal magnetic fields on axisymmetric modes via hoop
stresses, leading to azimuthal magnetorotational instability
(Hollerbach & Rüdiger 2005; Kirillov & Stefani 2010; Guseva
et al. 2017; Mamatsashvili et al. 2019; Meduri et al. 2024).
This could be important on larger length-scales than those
that we consider but it would require us to adopt a global
model. An initially purely toroidal field can play a role non-
linearly in local models even if the linear instability is ax-
isymmetric however, so future nonlinear simulations should

explore these fields, also because of their possible role in driv-
ing non-axisymmetric instabilities.

The incompressible MHD equations governing perturba-
tions to the shear flow U0 and background stable stratifica-
tion in the Boussinesq approximation, in the frame rotating
at the rate Ω, are

Du+ 2Ω× u+ u · ∇U0 = −∇p+ θeg +B · ∇B + ν∇2u,
(1)

Dθ +N 2u · eθ = κ∇2θ, (2)

DB = B · ∇u+B · ∇U0 + η∇2B, (3)
∇ ·B = 0, (4)
∇ · u = 0, (5)
D ≡ ∂t + u · ∇+U0 · ∇. (6)

Here u is a velocity perturbation and B is the total magnetic
field. We define a temperature perturbation θ having units of
acceleration and related to the standard temperature pertur-
bation T̃ via θ = αgT̃ , where α is the thermal expansion
coefficient and g is the local gravitational acceleration. We
use Alfvén speed units for the magnetic field, such that the
dimensional magnetic field is B/

√
µ0ρ, where ρ is the con-

stant reference density that we henceforth set to unity and µ0

is the vacuum permeability. Magnetic pressure is contained
within the total pressure p. We consider constant kinematic
viscosity ν, thermal diffusivity κ and ohmic diffusivity η. For
reference, the basic state satisfies:

2Ω×U0 = −∇p0 + αgTeg, (7)

0 = κ∇2T, (8)

since ∂tU0 = U0 · ∇U0 = ∇2U0 = B0 · ∇B0 = 0 and the
equivalents of Eqs. 3–5 are trivially satisfied.

A background temperature (entropy) profile T (x, z) has
also been adopted, with uniform gradient (hence satisfying
Eq. 8) αg∇T = N 2eθ, where eθ = (cos Γ, 0, sin Γ), where the
buoyancy frequency N 2 > 0 in radiative zones. The effective
gravity vector eg lies approximately in the spherical radial
direction, and is inclined to x by an angle ϕ. For clarity, we
consider sufficiently slowly rotating stars that eg lies approxi-
mately along the spherical radial direction, and hence “radial”
will be assumed to be along eg, though the model itself does
not require this restriction (and it would not be the correct
interpretation in very rapidly rotating stars).

We expect the star to adjust rapidly to satisfy thermal wind
balance, and enforcing this requirement eliminates the angle
Γ as a free parameter. This means that U0 and its thermal
state satisfy the thermal wind equation (TWE)

2ΩS sinΛ = N 2 sin(Γ− ϕ), (9)

which is derived from the azimuthal component of the vor-
ticity equation for the basic state, i.e., the curl of Eq. 7. This
is unaffected by our magnetic field B0. The representation of
various global differential rotation profiles and magnetic field
orientations in our local model are summarised in Table. 2.1.
We also illustrate the various angles in our problem in Fig. 2.
See paper 3 for further details of the non-magnetic model.

We use units defined by the rotational timescale, Ω−1, and
the lengthscale

d =
( νκ

N 2

) 1
4
. (10)
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4 R. W. Dymott et al.

Λ ϕ Differential rotation Magnetic field

0 - Ω(ϖ) (cylindrical) arbitrary
±90◦ - Ω(z) (axial variation) arbitrary

- 0 Ω(r) (spherical/shellular) horizontal/latitudinal
- ±90◦ Ω(β) (horizontal/latitudinal) radial
- - Ω(r, β) (arbitrary) arbitrary

Table 1. Table of differential rotation profiles and magnetic field
orientations (in the meridional plane) as Λ and ϕ are varied. Here
β is co-latitude, z is distance along rotation axis, r is spherical
radius and ϖ is cylindrical radius.

Figure 2. Illustration of the key vectors and corresponding an-
gles in the (x, z)-plane. The cylindrical radial direction (along the
equator) is along Ω̂

⊥
, and the rotation axis is along Ω̂. The lo-

cal radial direction is (approximately) along the effective gravity
direction eg , which is misaligned with respect to the x-direction
when ϕ is nonzero. The magnetic field is along z.

The fastest growing hydrodynamic (GSF) modes typically
have wavelengths O(d). With this choice of length, the buoy-
ancy timescale N−1 is equal to the geometric mean of the
viscous (d2/ν) and thermal (d2/κ) diffusion timescales (see
e.g. Radko 2013, for other double-diffusive problems). Note
that with the addition of a magnetic field it is not at all clear
that unstable modes will necessarily have lengthscales O(d),
and in fact we will show that MRI modes may have much
larger scales. However, for comparison with papers 1-3 and
for comparing GSF and MRI modes, we continue to adopt
this choice of units here.

3 LINEAR THEORY

We consider linear perturbations to our flow U0, thermal
state, and magnetic field B0. From Eqs. 1–6, such velocity
(u), magnetic (B), pressure (p) and temperature (θ) pertur-
bations are described by (where we have avoided introducing

hats on perturbations)

Du+ 2Ω× u+ u · ∇U0 = −∇p+ θeg +B0 · ∇B + ν∇2u,
(11)

Dθ +N 2u · eθ = κ∇2θ, (12)

DB = B0 · ∇u+B · ∇U0 + η∇2B, (13)
∇ ·B = 0, (14)
∇ · u = 0, (15)
D ≡ ∂t +U0 · ∇. (16)

Note that we have defined our field and flow to satisfy
B0 · ∇U0 = 0 so that the basic state is an equilibrium con-
figuration. Note that this restriction was not made in many
prior works, including Balbus & Hawley (1994); Menou et al.
(2004); Menou & Le Mer (2006), but it is necessary to have a
well-defined steady basic state. It is unclear whether results
obtained for any other poloidal field configuration (with a
time-dependent basic state) are valid. We might expect re-
sults in such cases to only be approximately valid if growth
times are sufficiently small compared with the timescale for
the evolution of the basic state but not when the instability
grows weakly.

3.1 Dispersion relation for axisymmetric modes

We consider axisymmetric modes with meridional wavevec-
tors k = (kx, 0, kz) = k(cos θk, 0,− sin θk) with magnitudes
k =

√
k2
x + k2

z and angles θk, since axisymmetric modes are
likely to be the fastest growing (e.g. Latter & Papaloizou
2018), and we define k̂ = k/k. These permit complex expo-
nential solutions proportional to exp(ikxx + ikzz + st). We
define the complex growth rate s = σ+iω, where the growth
(decay) rate σ ∈ R and the oscillation frequency ω ∈ R.
We manipulate Eqs. 11–16 for such perturbations. and define
the modified growth rates sν = s + νk2, sκ = s + κk2 and
sη = s+ ηk2, to obtain the quintic dispersion relation

s2ηs
2
νsκ+2sηsνsκω

2
A+sκω

4
A+as2ηsκ+sκξ+b(s2ηsν+sηω

2
A) = 0,

(17)

where

a =
2

ϖ
(k̂ ·Ω)(k̂ · (∇ℓ)⊥), (18)

=
2Ω

k2
(sΛkx + cΛkz)(2ΩkxsΛ + (2ΩcΛ − S)kz), (19)

=
2Ω|∇ℓ|

ϖ
sΛ−θksγ−θk , (20)

b = N 2(k̂ · e⊥
θ )(k̂ · e⊥

g ), (21)

=
N 2

k2
(kzcΓ − kxsΓ)(kzcϕ − kxsϕ), (22)

= N 2sθk+ϕsθk+Γ, (23)

ξ = −2(k̂ ·Ω)Sω2
Ak̂z = 2SΩsΛ−θksθkω

2
A, (24)

and

ω2
A = (B0 · k)2 = k2B2

0s
2
θk , (25)

is the squared Alfvén frequency. In the above cΛ and sΛ refer
to cosΛ and sinΛ for brevity, and similarly for trigonometric
functions with other arguments (though sν , sκ and sη always

MNRAS 000, 1–24 (2024)



Diffusive rotational instabilities 5

represent modified growth rates instead). We have also de-
fined the local angular momentum gradient

∇ℓ = ϖ(2ΩcΛ − S, 0,−2ΩsΛ),= |∇ℓ|(cγ , 0,−sγ), (26)

which has magnitude

|∇ℓ|2 = ϖ2 (S2 + 4Ω(Ω− ScΛ)
)
. (27)

The normal to this is

(∇ℓ)⊥ = ϖ(2ΩsΛ, 0, 2ΩcΛ − S) = |∇ℓ|(sγ , 0, cγ). (28)

We also define the vector perpendicular to the effective grav-
ity,

e⊥
g = (−sϕ, 0, cϕ), (29)

and the normal to stratification surfaces,

e⊥
θ = (−sΓ, 0, cΓ). (30)

The baroclinic shear (along the rotation axis) is

Ω̂ · (∇ℓ) = −SϖsΛ = |∇ℓ|sγ−Λ. (31)

The dispersion relation (17) can be expanded out as a quin-
tic equation

s5 + c1s
4 + c2s

3 + c3s
2 + c4s+ c5 = 0, (32)

where the coefficients c1 to c5 are given by

c1 = k2(2η + 2ν + κ), (33)

c2 = k4(η2 + 2ηκ+ 4ην + 2νκ+ ν2) + 2ω2
A + a+ b, (34)

c3 = k6(η2κ+ 2ην2 + 2η2ν + κν2 + 4ηκν)

+ 2ω2
Ak

2(η + ν + κ) + ak2(2η + κ) + bk2(2η + ν), (35)

c4 = k8(2ην2κ+ 2η2νκ+ η2ν2) + 2ω2
ak

4(ην + ηκ+ νκ)

+ ω4
A + ak4(2ηκ+ η2) + ξ + bk4(2ην + η2) + bω2

A, (36)

c5 = k10η2ν2κ+ 2ω2
Ak

6ηνκ+ ω4
Ak

2κ+ aη2κk6

+ ξk2κ+ bk6η2ν + bω2
Ak

2η. (37)

3.2 Non-diffusive (in)stability

Non-diffusive modes, i.e. those with ν = κ = η = 0, are
described by the reduced dispersion relation

s4 + (2ω2
A + a+ b)s2 + (ω4

A + bω2
A + ξ) = 0, (38)

ignoring neutral modes with s = 0. Note that the only ap-
pearance of the magnetic field is through the combination
B0 · k = B0kz in ωA, therefore the adiabatic growth rate is
independent of B0 if arbitrary kz are permitted. This can be
solved to give

s2 =
−(2ω2

A + a+ b)±
√

4aω2
A − 4ξ + (a+ b)2

2
. (39)

If we take B0 = 0 then this reduces to the adiabatic dispersion
relation in paper 3 (equation 27), s2 = −(a + b). We would
also obtain s2 = −(a+b) in the diffusive case if we took k → 0
in Eq. 32, since ω2

A → 0 in this limit, thereby eliminating the
influence of magnetic fields on such modes.

Since s2 is always negative if a+ b is positive, with s being
purely imaginary, then the system is Solberg-Høiland stable.
The discriminant ∆ = 4aω2

A − 4ξ + (a + b)2 in (38) is al-
ways positive, so the roots for s2 are always real. Hence, non-
diffusive oscillatory instabilities cannot occur. To see this,
note that from Eqs. 18 and 28 we have

k̂ · (∇ℓ)⊥ = ϖ(2(k̂ ·Ω)− k̂zS), (40)

and using the definition of ξ (Eq. 24),

∆ = 4aω2
A − 4ξ + (a+ b)2 = (a+ b)2 + 16ω2

A(k̂ ·Ω)2, (41)

which being the sum of squares must be non-negative.
The criterion for onset of direct instability (real roots) oc-

curs when (for neutral stability s = 0)

ω4
A + bω2

A + ξ = 0, (42)

and instabilities occur when this term is negative. So the
only way to destabilise a hydrodynamically Solberg-Høiland
stable configuration without diffusion is for the left hand side
of Eq. 42 to be negative, which corresponds with a direct
instability, the MRI. MRI works best with a weak field (or on
large length-scales), meaning the stabilising term ω4

A is small
compared with the others, and when the fluid is neutrally
rather than stably stratified (b = 0). Then, MRI just requires
a mode with a k which makes ξ negative. In the weak field
or small wavenumber case, ω4

A → 0 faster than the remaining
terms in Eq. 42, so for non-zero B0, instability occurs if

b− 2(k̂ ·Ω)Sk̂z < 0. (43)

Hence in the special case of cylindrical differential rotation,
Ω(ϖ), we have N 2−2ΩS < 0. If the stabilising effects of buoy-
ancy are absent, the stability criterion in the weak field case
is −2ΩS < 0, which involves angular velocity rather than an-
gular momentum gradients (e.g. Balbus & Hawley 1998). So
S > 0 is required for instability (to MRI), which is generally
much easier to satisfy than Rayleigh’s criterion for centrifugal
instability, which requires S > 2 in the hydrodynamic case,
implying outwardly decreasing angular momentum.

The three quantities a, b and ξ that appear in Eq. 38 cor-
respond to three different instability mechanisms. If there is
no stratification or magnetic field, angular momentum-driven
instability occurs if k can be chosen so that a < 0. In the case
of cylindrical rotation this is just Rayleigh’s criterion that in-
stability occurs when the angular momentum decreases out-
wards. More generally, using Eq. 20, a < 0 when the wavevec-
tor k lies in the wedge between Ω⊥ and ∇ℓ. The quantity b is
associated with the stratification, see Eq. 23, and baroclinic
instability b < 0 occurs when the wavevector k lies in the
wedge between eg and eθ. When the stratification is very
strong, the thermal wind equation makes this wedge angle
small, so baroclinic instability is weak. Then in a convec-
tively stable region b will be large and positive unless the
wavevector is nearly parallel to gravity, i.e. horizontal flow
along the isobars. The quantity ξ, Eq. 24, is associated with
MRI instability. From Eq. 42 if b > 0 we need ξ < 0 for in-
stability. This happens if the wavevector k lies outside the
wedge between Ω̂

⊥
and the x-axis.

3.2.1 Marginal stability to stratified non-diffusive MRI

In order to find the non-diffusive unstable modes for weak
fields we substitute k = k(cos θk, 0,− sin θk) into Eq. 43 and
solve for the marginal stability lines, giving

N 2 sin(θk + Γ) sin(θk + ϕ) + 2ΩS sin(Λ− θk) sin θk = 0. (44)

In the strongly stratified limit, N2 ≫ |ΩS| and Γ ∼ ϕ (from
Eq. 9),

N 2 sin2(θk + ϕ)− 2ΩS sin(θk − Λ) sin θk = 0. (45)

MNRAS 000, 1–24 (2024)



6 R. W. Dymott et al.

If N 2 ≫ 2|ΩS|, this can only be satisfied when sin2(θk+ϕ) ∼
0, hence θk + ϕ ≈ nπ where n ∈ N. Note that θk is defined
below the x-axis so −θk is the angle above it. This means that
−θk = ϕ = Γ when n = 0, indicating that k lies along eθ or
eg, so that fluid motions are along stratification (or constant
pressure) surfaces, i.e. parallel to e⊥

θ ∼ e⊥
g . Hence instability

is possible for a wedge of wavevector angles around eθ (e.g.
Balbus 1995). If ϕ > 0 and the box is in the northern hemi-
sphere, eg lies outside the MRI-stable wedge between Ω̂

⊥
and

the x-axis, see Fig. 2, and we expect MRI instability. How-
ever, if ϕ < 0 in the northern hemisphere, eg lies inside the
MRI-stable wedge (recall Λ + ϕ > 0 in the northern hemi-
sphere so Λ > |−ϕ|), and so no MRI will occur, though there
may be unstable GSF modes.

3.2.2 Fastest growing non-diffusive modes

We now find the wavevector magnitude k and orientation
θk corresponding to the maximum growth rate, and in turn
identify the dominant mode. To find the fastest growing mode
we first maximise over k2, and then maximise over the angle
θk. Note a and b only depend on θk and not on the magnitude
k, so ∂a/∂k2 and ∂b/∂k2 are both zero. We also have

∂ω2
A

∂k2
=

ω2
A

k2
, and

∂ξ

∂k2
=

ξ

k2
. (46)

To obtain the fastest growing mode properties, we differ-
entiate Eq. 38 with respect to both k2 and θk and require
∂k2s = ∂θks = 0. Setting the k2 derivative of Eq. 38 to zero
gives:

s2 = −N 2

2
sϕ+θksΓ+θk − ΩSsθksΛ−θk − k2B2

0s
2
θk . (47)

This is clearly maximised for weak fields or for modes with
k → 0 where the last term vanishes, since that provides a
stabilising effect, though we must have nonzero B0 to obtain
this result. Now we can maximise over θk to obtain

0 = −N 2

2
sΓ+ϕ+2θk − ΩSsΛ−2θk − k2B2

0s2θk . (48)

In the strongly stratified limit the dominant term is usually
the first one involving N 2, which is stabilising, unless we
choose a specific range of θk. This means that in order to
maximise the growth rate we need to minimise this term. In-
deed the magnitude of this term is smallest when θk ≈ −Γ+ϕ

2

i.e. when the wavevector is approximately halfway between
eg and eθ. Note that in the strongly stratified limit the TWE
implies that ϕ ≈ Γ and hence this term approximately van-
ishes for θk ≈ −ϕ ≈ −Γ. For such wavevectors that minimise
the stabilising effects of buoyancy,

s2 = ΩSsϕsΛ+ϕ −B2
0ω

2
As

2
ϕ. (49)

Note that the magnetic term that only occurs in the non-weak
field limit is always negative, meaning that in the adiabatic
regime a stronger magnetic field should decrease the maxi-
mum growth rate of the instability. In the weak field case,
where we can ignore the second term, we are left with

s2 = 2ΩSsϕsΛ+ϕ. (50)

Hence, we require both ϕ and Λ + ϕ to have the same sign,
either both in the northern or southern hemisphere for onset
of instability.

3.3 Diffusive instabilities

3.3.1 Small Pr/Pm limit: very efficient thermal diffusion

In the limit of very efficient thermal diffusion relative to vis-
cous and ohmic diffusion, we would expect Eq. 38 to approx-
imately apply for sufficiently large wavelength instabilities
(with smallish k, for which viscous and ohmic diffusion are
relatively unimportant) but with b = 0. To show that this
is indeed the case, if we consider Eq. 17, set ν = η = 0 and
then consider the limit κ → ∞. This means that in Eq. 17
ηk2 ≪ s, νk2 ≪ s but κk2 ≫ s, which is like considering the
joint limits Pr/Pm → 0 and Pr → 0 with all other quantities
O(1). We obtain the dispersion relation

s4 + (2ω2
A + a)s2 + (ω4

A + ξ) = 0. (51)

This is the same as Eq. 38 with b = 0 and describes MRI
modes satisfying the unstratified (b = 0) non-diffusive disper-
sion relation with nonzero field2. The fastest growing modes
(maximising over k2, i.e. setting ∂k2s = 0) in the limit of
weak fields or small k (for which ω4

A can be ignored relative
to the other terms) satisfy

s2 = − ξ

2ω2
A

= (k̂ ·Ω)S
kz
k

= SΩsθk−Λsθk . (52)

In this limit instability occurs for any S > 0 (though strictly
the approximations for which this limit applies are then no
longer valid). The growth rate is maximised over θk when
∂θks

2 = 0, giving

sΛ−2θk = 0 ⇒ θk =
Λ

2
− n

π

2
, (53)

for n ∈ N, i.e. for modes with orientations halfway between
the rotation axis (along Ω̂) and the angular velocity gradient
(along x) when n = 1. For cylindrical differential rotation
(Λ = 0), this implies θk = ±π

2
, and hence wavevectors are

along z, as expected (e.g. Balbus & Hawley 1991). On the
other hand, when Λ = −30◦, θk = −105◦ (indicating 105◦

above the x axis), and when Λ = 60◦, θk = −60◦ (indicating
60◦ above the x axis). This is consistent with our later Fig-
ures 3–5 for the largest Pm considered, and is most evident
for the strongest magnetic fields plotted there.

For even stronger fields or larger wavenumbers, there is a
stabilising effect of magnetic tension through the ω4

A term
in the dispersion relation. Fields are sufficiently strong when
ω2
A = B2

0k
2s2θk ∼ 2ΩSsθk−Λsθk , and hence typically for k2 ∼

2ΩS/B2
0 . In addition, larger k modes would be increasingly

affected by ohmic diffusion and viscosity.

3.3.2 Diffusive modes in the small shear (small S/Ω) limit

In paper 3, we computed the curves showing the lowest value
of the shear S for which instability is possible as a function
of the angle ϕ, the angle between the shear and gravity direc-
tions (see Figure 6 in paper 3). Apart from the exceptional
case on the equator, there is a finite minimum S below which

2 This is analogous to what was found for the hydrodynamic case
in the limit Pr → 0 and RiPr → 0, where the fastest growing mode
growth rates were described by s2 = −a, the adiabatic unstrati-
fied dispersion relation (Barker et al. 2020; Dymott et al. 2023).
However, the dispersion relation here requires the presence of non-
vanishing magnetic field.
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no instability occurs. This is no longer the case when a mag-
netic field is added. There is then a whole range of ϕ for which
the system is unstable for arbitrarily small S. This is quite
surprising, as both GSF and MRI instability are driven by
the shear, so one might imagine that reducing the shear to-
wards zero would eliminate them. What happens is that the
growth rate does tend to zero as S is reduced, but it can al-
ways remain positive, so the critical value of S for instability
can be zero.

To establish this, we consider the case where S/Ω → 0, and
seek modes with small but positive growth rate s ∼ O(S). We
now consider the ordering of the terms in the quintic disper-
sion relation Eq. 17. We retain the diffusive terms, choos-
ing O(ηk2) ∼ O(νk2) ∼ O(κk2) ∼ O(S). a is O(Ω2) and
we choose the magnetic field strength so that ω2

A ∼ O(SΩ),
which makes ξ ∼ O(S2Ω2). If we take N 2 ∼ O(Ω2) or larger,
it appears we have an inconsistency, because then the dom-
inant term in Eq. 17 is bsηω

2
A ∼ O(S2Ω3) whereas the re-

maining terms are O(S3Ω2) or smaller. However, the thermal
wind equation Eq. 9 implies that Γ and ϕ are almost aligned
if S/Ω ≪ 1. If we choose our wavenumber k = k(cθk , 0,−sθk )
so that θk = π−(Γ+ϕ)/2, aligned in the limit S/Ω → 0 with
both eθ and eg, then b = N 2sθk+Γsθk+ϕ = −N 2s2Γ/2−ϕ/2,
and now the thermal wind equation Eq. 9 implies that
b ∼ O(S2), much smaller than O(Ω2). Numerical solutions of
Eq. 17 show that the critical wavenumber k is indeed aligned
with eθ and eg. Now the inconsistency in the b term in Eq. 17
is removed, because this term is now negligible compared with
the O(S3Ω2) terms. We obtain

as2ηsκ + (ω4
A + ξ)sκ = 0. (54)

where

ω2
A = B2

0k
2 sin2 ϕ, a = 4Ω2 sin2 β,

ξ = −2k2SΩB2
0 sinβ sin3 ϕ, (55)

and β = Λ+ϕ is the latitude. Dividing by sκ, which must be
positive for growing modes,

as2η + ω4
A + ξ = 0, implying s = −ηk2 +

√
−ω4

A − ξ

a
. (56)

From Eq. 55 a > 0, so for instability we must have ξ < 0,
and so for S > 0 the angle ϕ and the latitude β must have
the same sign for instability, so in the northern hemisphere,
β > 0, we must have ϕ > 0 for our small S modes to be
unstable. In the solution Eq. 56 the largest term as k → 0
is the ξ term, so that for negative ξ there is always a small
enough k that makes s > 0, so that that however small S is,
it is always possible to find a growing mode. This behaviour
is illustrated below in Fig. 12 for latitude 30◦ N showing in-
stability for very small S when ϕ > 0. For very large N 2, as
we might expect in stars, and for small S (weak differential
rotations), the inertial term a is negligible. Since b would then
in general dominate all other terms in Eq. 17, for instability
we must choose modes for which fluid motion is along strati-
fication surfaces, meaning k must be parallel or anti-parallel
to gravity. For small S, eg is very close to eθ. Why can’t
you wipe out the effect of the stratification by thermal dif-
fusion in this limit as you can with GSF (for example)? For
thermal diffusion to work, k must be reasonably large, and
GSF modes are stabilised by the magnetic field at large (or
moderate) k. At small S, MRI is stabilised by the ω4

A term
too because ξ is proportional to S unlike ω4

A. Only small k

(or small B0) reduces ω4
A relative to ξ, and having small k

doesn’t allow efficient enough thermal diffusion for instabil-
ity. Hence, the fundamental MRI mechanism that operates
for small S is typically non-diffusive.

As N 2 is reduced, S is made larger, or the field is reduced,
then GSF modes with a larger k can operate, and there are
more possibilities for instability. We will return to this point
later when analysing instability in the solar tachocline.

4 NUMERICAL LINEAR RESULTS

In this section we solve the dispersion relation and graphically
analyse the properties of the possible instabilities in our sys-
tem. In Figures 3–5 we probe effects of varying the magnetic
field strength B0 and magnetic Prandtl number Pm for three
different configurations with different latitudes β = Λ + ϕ
and orientations of the shear with respect to gravity ϕ. We
fix Pr = 0.01 small, but motivated by parameters accessible
with nonlinear numerical simulations, and S = 2 (following
Barker et al. 2020; Dymott et al. 2023), since the latter choice
would be marginally stable according to Rayleigh’s criterion
for cylindrical differential rotation. We present pseudocolour
plots of the base 10 logarithm of the growth rate of an axisym-
metric perturbation in Fourier space (kx, kz) in these figures.
Over-plotted in red are the lines Ω̂

⊥
and ∇ℓ, within which

the direct GSF instability occurs, and in light blue are the
directions of buoyancy (more specifically, the normal to strat-
ification surfaces) and gravity, eθ and eg, respectively. For
comparison the hydrodynamic cases with B0 = 0 are shown
in the top row of each figure. The magnetic field strength
B0 is increased within the set [0, 1, 2.5, 5] with each succes-
sive row, and Pm is increased within [0.01, 0.1, 1] with each
successive column.

We identify two sets of ‘lobes’ of instability operating in
the system. The dominant sets are bounded by ∇ℓ and Ω̂

⊥
in

the hydrodynamic case, and they correspond to the dominant
direct instability. This is either the double-diffusive GSF or
the adiabatic Solberg-Høiland instability (see § 3.2 of paper 3
for the explicit conditions required for the latter to operate).
The fastest growing modes typically have growth rates O(1),
which we note is comparable to Ω−1, given our unit of time,
and are initially (in the hydrodynamic case) observed to lie
along the line that is approximately half-way between ∇ℓ

and Ω̂
⊥

. This wedge is perpendicular to the physical wedge
within which the unstable mode displacements and velocity
perturbations arise due to incompressibility. The second set
of smaller lobes, when present, contains oscillatory modes,
which are weakly growing internal magneto-inertia-gravity
waves that propagate and are destabilised within the wedges
bounded by eg and eθ.

The introduction of non-zero B0 has observable effects on
the orientation, strength and structure of the unstable region
in parameter space. Increasing the strength of the field for a
fixed Pm has a tendency to force the modes into alignment
with the preferred direction for MRI modes, and to shift them
to larger scales (smaller k magnitudes), both as predicted in
§ 3.3. Note that we do not observe the MRI modes to be well
aligned with eθ here, as explained in § 3.2. This is likely due to
the effects of thermal diffusion in eliminating the stabilising
effects of buoyancy forces on MRI modes when Pr/Pm = η/κ
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3. Logarithm of the growth rate log10(σ/Ω) of axisymmetric perturbations plotted on the (kx, kz)-plane according to Eq. 17, for
various B0 and Pm, with ϕ = 30◦,Λ = −30◦, i.e. a mixed radial/latitudinal shear at the equator with latitude Λ + ϕ = 0◦. Parameters
are N 2/Ω2 = 10, Pr= 10−2, S/Ω = 2. We vary the strength of the magnetic field from B0 = 0 to B0 = 5 down each column, and vary
Pm from Pm = 0.01 to Pm = 1 along each row. GSF modes are primarily confined within the wedge bounded by Ω̂

⊥
and ∇ℓ (red lines).

However as the field strength increases (downwards) the wavevector orientation is shifted to correspond more with MRI. Increasing B0 at
fixed Pm decreases both the maximum growth rate and the size of the unstable region on the (kx, kz)-plane. Reducing magnetic diffusivity
by increasing Pm on the other hand seems to have the opposite effect and enhances the destabilising effects of the field, leading to a larger
region of instability as well as a stronger destabilisation of the dominant mode.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. Logarithm of the growth rate log10(σ/Ω) of axisymmetric perturbations plotted on the (kx, kz)-plane according to Eq. 17, for
various B0 and Pm, with ϕ = −30◦,Λ = 60◦, i.e. a mixed radial/latitudinal shear at latitude Λ + ϕ = 30◦. Parameters are N 2/Ω2 = 10,
Pr= 10−2, S/Ω = 2. We vary the strength of the magnetic field from B0 = 0 to B0 = 5 down each column, and vary Pm from Pm = 0.01

to Pm = 1 along each row. GSF unstable modes are primarily confined to within the wedge bounded by Ω̂
⊥

and ∇ℓ (red lines) for weak
fields, but this direction is modified when the MRI takes over. We observe a secondary set of unstable oscillatory modes, consisting of
weakly destabilised magneto-inertial-gravity waves. These grow more weakly than the primary lobes but they are less affected by the
stabilising effects of the magnetic field and even operate (as in the B0 = 5,Pm = 0.01 case) when the primary lobes have been stabilised
by it.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Logarithm of the growth rate log10(σ/Ω) of axisymmetric perturbations plotted on the (kx, kz)-plane according to Eq. 17, for
various B0 and Pm, with ϕ = 60◦,Λ = −30◦, i.e. a mixed radial/latitudinal shear at latitude Λ + ϕ = 30◦. Parameters are N 2/Ω2 = 10,
Pr= 10−2, S/Ω = 2. We vary the strength of the magnetic field from B0 = 0 to B0 = 5 down each column, and vary Pm from Pm = 0.01

to Pm = 1 along each row. When B0 = 0 the system is adiabatically unstable since it violates the Solberg-Høiland criterion. This is
visually characterised by a tendency for the fastest growing modes to occur even as k → 0, suggesting that the presence of diffusion leads
to the preference of the largest possible wavelengths in this regime. This is in comparison to the GSF and MRI modes cases where the
fastest growing modes here have a unique non-zero wavenumber and hence a preferred wavelength in real space.
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and Pr are both small, which is the case here when Pm ≥
0.01 as we fix Pr = 0.01. The addition of a field seems to
impose a stabilising effect on the hydrodynamically-unstable
GSF modes, ultimately resulting from the stabilising effects
of magnetic tension (see also Latter & Papaloizou 2018), and
so the majority of cases exhibit a smaller growth rate for the
dominant instability as B0 is increased.

Magnetic diffusion counteracts the effects of magnetic
fields, and this is clearest for small Pm in the left panels
of Figures 3–5. Cases with Pm = 1 have the weakest ohmic
diffusion, and cases with Pm = 0.01 have much more efficient
ohmic than viscous diffusion. Small Pm allows magnetic cases
to return to the hydrodynamic limit and larger Pm (closer to
unity, in our case) therefore exhibit the strongest magnetic
effects for a given B0. When Pm = 1, instability is possi-
ble outside the hydrodynamic region contained within the
lines Ω̂

⊥
and ∇ℓ. This can be seen most clearly in the right-

most bottom panel of these figures, where magnetic effects
are strongest (and magnetic diffusion is weakest). The direc-
tion of the preferred modes in that case are better described
by the unstratified (due to rapid thermal diffusion) MRI in
§ 3.3.

The oscillatory modes seem to be only very marginally
modified by the magnetic field, as is seen most clearly in
Fig. 4. This suggests that the internal inertia-gravity waves
observed to be destabilised in paper 3 (Dymott et al. 2023)
within the wedge between eg and eθ continue to be weakly
destabilised magneto-inertial-gravity waves.

5 PARAMETER DEPENDENCE OF FASTEST
GROWING MODE

After displaying the properties of all unstable axisymmetric
modes on the (kx, kz)-plane in our system as B0 and Pm are
varied, we now turn to explore the variation in the fastest
growing mode optimised over kx and kz as the parameters are
varied. We primarily consider S = 2, N2 = 10 at 4 latitudes
(β = ϕ+ Λ = 0◦, 30◦, 60◦ and 90◦).

5.1 Non-diffusive instabilities

We first explore non-diffusive (stratified) instabilities by solv-
ing the quartic dispersion relation in Eq. 38 numerically
(using fminsearch on −ℜ[s] in Matlab), to determine the
properties of the fastest growing mode, which we present in
Fig. 6 as a function of the direction of the differential rota-
tion ϕ, for three different latitudes β = 30◦, 60◦ and 90◦.
The left panel shows the growth rate σ of the fastest grow-
ing mode, the middle panel the corresponding wavenumber
magnitude k, and the right panel the wavevector orientation
θk = tan−1(−kz/kx). Note that the magnetic field only ap-
pears in Eq. 38 through powers of ωA, therefore the results
in the left and right panels of Fig. 6 are independent of the
magnetic field, whereas the middle panels show results for
B0 = 1 but k can be straightforwardly scaled to consider any
B0 since the y-axis can be interpreted as B0k (and kz can be
obtained using the corresponding θk). This means that for
strong fields, instability prefers small k.

The blue lines in Fig. 6 are results at a latitude of 30◦.
Blue dashed lines are where the non-diffusive hydrodynamic
Solberg-Høiland instability operates, and blue lines where

the magnetic field modifies the instability over the hydro-
dynamic case (shown in Fig. 4(b) in Dymott et al. 2023).
Values of ϕ for which there are no blue or red line are
non-diffusively stable. When the non-diffusive hydrodynamic
Solberg-Høiland modes are unstable in red, between approx-
imately ϕ ∈ [60◦, 150◦], there is no preferred k, only a pre-
ferred wavevector orientation. In this limit, the blue lines sug-
gest the wavevector k → 0 for this range of ϕ. The magnetic
field widens the unstable region to below ϕ = 0 from ϕ ≈ 30◦.

For latitudes 60◦ (green lines) and 90◦ (red lines), there are
no purely hydrodynamically unstable non-diffusive modes,
but it can be seen by comparison with Fig. 4 in paper 3
that the field widens the unstable range of ϕ. The growth
rate has a similar maximum value to the hydrodynamic case,
with σ ∼ 1 for the maximal ϕ. ϕ ≈ −30◦ to 180◦ are typ-
ically the most unstable configurations, and they also have
the largest wavelength (smallest k) instabilities, whereas ϕ
approximately between −150◦ and −30◦ are typically non-
diffusively stable. Note that we have obtained a new region
of instability near to ϕ ≈ −180◦ that we omitted from Fig. 4
in paper 3 but is also present in the hydrodynamic case.

5.2 Diffusive instabilities

In stellar radiation zones, rapid thermal diffusion means that
Pr ≪ 1, Pm ≪ 1 and Pr/Pm = η/κ ≪ 1. Hence, the
stratified non-diffusive instabilities we have just analysed are
likely to be modified by thermal diffusion. To explore this, we
solve the full triply-diffusive dispersion relation Eq. 17 with
Pr = 10−2 and Pm = 0.1, for which Pr/Pm = 0.1 and is
therefore small. Though these are small values they are not
in the regime of stellar interiors — howver these values are
accessible for nonlinear calculations. We show the growth rate
(left panels), wavevector magnitudes (middle panels) and ori-
entations θk (right panels) as a function of ϕ for various field
strengths strengths B0 ∈ [0, 1, 2.5, 5, 10] in Figs. 7, 8, 9, 10
for latitudes 0◦, 30◦, 60◦ and 90◦, respectively. These demon-
strate the effects of a magnetic field on linear growth rates
over the complete range of differential rotation configurations
(value of ϕ) with S = 2.

The equatorial case in Fig. 7 is symmetric about ϕ = 0
and is adiabatically (non-diffusively) stable for S = 2 for any
ϕ and B0. The hydrodynamic B0 = 0 case is stable when
ϕ = 0, corresponding to cylindrical rotation at the equa-
tor, but it becomes destabilised by even a weak magnetic
field. This destabilisation is seen at all latitudes and is a
result of a change in the stability criteria governing insta-
bility here. In the hydrodynamic case we require a violation
of Rayleigh’s criterion, which requires angular momentum to
decrease outwards on isobars for instability, whereas in the
magnetic case this criteria can – for certain field strengths
– correspond to an MRI mode that requires angular veloc-
ity to decrease along isobars instead, which is much easier to
satisfy. Within close proximity to the cylindrically-rotating
profile (−15◦ ≲ ϕ ≲ 15◦), the magnetic instability operating
is significantly more unstable than the hydrodynamic case.
Increases in field strength of up to B0 ≈ 2.5 increase linear
growth rates of the dominant modes, paired with a decrease
in their wavelengths (increase in k) and a significant devi-
ation in orientation from the hydrodynamic case there (to-
wards θk ∼ 90◦, implying k is along z). Outside of this region
(particularly for ϕ outside of −60◦ ≲ ϕ ≲ 60◦), the field in-
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Figure 6. A selection of figures comparing the properties of the fastest growing non-diffusive (ν = κ = η = 0) modes with an imposed
magnetic field for S = 2 and N2 = 10 for latitudes 30◦, 60◦, 90◦. Left panel: maximum growth rate σ as a function of ϕ. The blue dotted
curve is where the fastest growing mode is hydrodynamic and the magnetic field plays no role, which prefers modes with k → 0. The
solid curves are where the corresponding k is non-zero and magnetic field affects the growth rate. Middle: k when it is finite and there is
instability. Right: corresponding wavevector orientation θk, which is well-defined for all growing modes.
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(b) |k| at Λ + ϕ = 0◦
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(c) θk at Λ + ϕ = 0◦

Figure 7. Properties of the fastest growing modes for various values of the magnetic field B0 with S = 2,Pr = 10−2, N2 = 10, Pm = 0.1,
for different rotation profiles (values of ϕ) at the equator. The hydrodynamically stable case of ϕ = 0◦, corresponding to cylindrical
rotation, is destabilised by the magnetic field. Within close proximity of cylindrical rotation (−15◦ ≲ ϕ ≲ 15◦) increases in field strength
of up to roughly B0 = 2.5 increase the growth rate. This is paired with a decrease in the wavelength of this mode and deviation in
orientation from the hydrodynamic case, where θk tends to align itself more so with the orientation of the field. For other ϕ, the field
tends to stabilise the instability over the hydrodynamic case, reducing its maximum growth rate and wavenumber k.

hibits growth of the hydrodynamic GSF modes and increases
their wavelength (reduces its k). For these parameters it is
clear that the magnetic field typically has a stabilising effect
except for close to cylindrical rotation profiles.

Fig. 8 shows the same results for latitude Λ+ϕ = 30◦. Here
the symmetry about ϕ = 0 seen at the equator is broken and
varying ϕ has more complicated effects. Cylindrical differ-
ential rotation corresponds here with ϕ = 30◦ (since then
Λ = 0◦), and we observe that it this stable when B0 = 0 but
is destabilised by the addition of a magnetic field, with more
magnetised cases becoming more unstable until the growth
rate becomes independent of B0 for B0 ≳ 2.5. After ϕ ≈ 60◦

there is very good agreement between all cases. This is when
the non-diffusive hydrodynamic Solberg-Høiland instability
operates (as seen in Fig. 6), which prefers k → 0, and mag-
netic fields have little effect on it.

There is a notable change in the ϕ range of non-zero |k|
values as B0 is increased, which goes from 169◦ ≲ ϕ ≲
−157◦ ∪ −135◦ ≲ ϕ ≲ 28◦ in the hydrodynamic case (note

that the boundary between 180◦ and −180◦ is continuous due
to symmetry) to 168◦ ≲ ϕ ≲ −160◦ ∪ −100◦ ≲ ϕ ≲ 60◦ in
the strongest B0 = 10 case. Note that in any region where
more than one B0 has well-defined |k| values, the smaller B0

always has the shorter wavelength. In regions where the mag-
netic instability operates the field again acts to force θk into
alignment with the preferred direction for unstratified MRI
modes discussed in § 3.3 for these parameters. Regions where
the dominant mode switches from one form of instability to
another can also be seen by a discontinuity in θk, as seen in
panel (c).

At latitude Λ+ϕ = 60◦, shown in Fig. 9, the effects of the
field are in many ways similar to Fig. 8. The range of unstable
ϕ values does however decrease with increasing B0, with the
smallest range of instability being −145◦ ≲ ϕ ≲ −100◦ in the
hydrodynamic case up to −155◦ ≲ ϕ ≲ −59◦ at B0 = 10.
However, the field is destabilising, leading to larger growth
rates between 15◦ ≲ ϕ ≲ 160◦, where the largest B0 is the
most unstable.
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(a) σ at Λ + ϕ = 30◦
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(b) |k| at Λ + ϕ = 30◦
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(c) θk at Λ + ϕ = 30◦

Figure 8. Properties of the fastest growing modes for various values of the magnetic field B0 with S = 2,Pr = 10−2, N2 = 10, Pm = 0.1,
for different rotation profiles (values of ϕ) at a latitude β = Λ + ϕ = 30◦. The addition of a magnetic field significantly alters the linear
growth rate of the diffusive modes, and typically acts to reduce both the growth rate σ and wavenumber k, but it does not affect the
adiabatically unstable region for ϕ ∈ [60◦, 170]. The effect of the magnetic field depends on both field strength (B0) and differential
rotation profile (ϕ). Nearly cylindrical differential rotations ϕ ≈ 30◦ (Λ = 0) that are hydrodynamically stable are heavily destabilised by
the addition of a magnetic field, which corresponds to onset of the MRI.
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(b) |k| at Λ + ϕ = 60◦
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(c) θk at Λ + ϕ = 60◦

Figure 9. Properties of the fastest growing modes for various values of the magnetic field B0 with S = 2,Pr = 10−2, N2 = 10, Pm = 0.1,
for different rotation profiles (values of ϕ) at a latitude β = Λ+ ϕ = 60◦.
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(a) σ at Λ + ϕ = 90◦
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(c) θk at Λ + ϕ = 90◦

Figure 10. Properties of the fastest growing modes for various values of the magnetic field B0 with S = 2,Pr = 10−2, N2 = 10, Pm = 0.1,
for different rotation profiles (values of ϕ) at a latitude β = Λ+ ϕ = 90◦.
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(a) σ at Λ + ϕ = 30◦ (b) |k| at Λ + ϕ = 30◦ (c) θk at Λ + ϕ = 30◦

Figure 11. Properties of the fastest growing modes for various values of the magnetic field B0, Pm and Pr with S = 2,Pr = 10−2, N2 = 10,
for different rotation profiles (values of ϕ) at a latitude β = Λ+ ϕ = 30◦.

Similar results are found at latitude Λ + ϕ = 90◦ in
Fig. 10. Modes with 20◦ ≲ ϕ ≲ 150◦ are destabilised by
the field, with nearly cylindrical rotation profiles (Λ ∼ 0◦)
being most strongly destabilised by the field. Cylindrical ro-
tation is marginally stable in the hydrodynamic case but is
the most unstable configuration for any B0 > 1 plotted here,
and grows faster than any hydrodynamic case in this figure.

5.2.1 Variation of B0, Pm and Pr

In Fig. 11 we explore the dependence of our results on Pm,
Pr and B0 at a latitude of 30◦, using the same parameters
otherwise as in Fig. 8. Our prior results indicate that increas-
ing magnetic diffusion can mitigate the effects of the field and
bring predictions closer to the hydrodynamic case when GSF-
unstable. We observe in Fig. 11 that increasing B0 inhibits
instability for ϕ < 0 in the northern hemisphere, but that
smaller Pm/Pr (more efficient magnetic diffusion) can mit-
igate this, as seen by comparing the solid and dashed blue
lines with the green dashed line. Fig. 11 indicates that there
does not appear to be a single parameter neatly describing
the competing influences of magnetic field and diffusion on
instability. For example, increasing B0 tends to enhance in-
stability around ϕ ∼ 0 when comparing the solid red and
dashed red lines (with the same Pr and Pm) but it has the
opposite effect for the solid blue and dashed blue lines. De-
creasing Pr, thereby reducing viscosity relative to thermal
diffusion, enhances instability for ϕ < 0 (compare the pink
dashed and solid blue lines). Varying Pm can have different
effects depending on other parameters, but we see reducing
Pm tends to enhance instability for ϕ < 0 when compar-
ing the green and blue dashed lines (with B0 = 10), but
inhibit it when comparing the solid blue and red lines. (Fix-
ing Pr/Pm = η/κ is also clearly not the sole parameter of
importance.)

5.2.2 Critical value of S

Finally, we determine numerically the critical value of S for
instability (Scrit), once again by optimising over kx and kz.
We show results in Fig. 12 for Scrit as a function of ϕ for
B0 = 0.1 (solid lines), B0 = 1 (dashed lines) and B0 = 10
(dotted lines) at a latitude 30◦, along with the corresponding
wavevector magnitude k and orientation θk. Our numerical

results confirm the arguments presented in § 3.3.2. In com-
plete contrast to the hydrodynamic case, we find MRI occurs
for any S > 0 for ϕ > 0, such that Scrit = 0 for such dif-
ferential rotations. Note that if we had chosen a negative
latitude value, Scrit = 0 would have occurred for ϕ < 0. The
corresponding wavenumber k also becomes arbitrarily small,
implying arbitrarily large wavelength instabilities according
to our local model. When ϕ < 0, the dominant instability
is primarily the hydrodynamic GSF instability, weakly mod-
ified by magnetic fields. This has a preferred k = O(1) (in
units of d−1) when it operates, and it is weakly inhibited by
the presence of the magnetic field. We expect to find similar
results – in terms of the modification of the hydrodynamic
results shown in Fig. 6 of paper 3 – for different latitudes
and field strengths. Stronger fields would widen operation of
the MRI and inhibit the GSF modes further. However, GSF
modes may still be the dominant instability for differential
rotations with ϕ < 0.

Overall, the addition of a magnetic field tends to inhibit
diffusive rotational instabilities by reducing σ for ϕ ≲ 0, and
to promote (increase σ) instability for ϕ ≳ 0, particularly
for nearly cylindrical differential rotations (Λ ∼ 0, where ϕ
equals the latitude). The wavelength of the dominant insta-
bility is typically affected by the strength of the field, with
stronger fields generally exciting larger wavelengths (smaller
k’s). The orientation of the mode also differs from the hydro-
dynamic prediction for strong enough fields. The effects of
magnetic fields on diffusive rotational instabilities are there-
fore complex, but in nearly all cases the field strongly mod-
ifies the growth rate or wavenumber of the dominant mode.
We may thus expect magnetic fields to substantially modify
turbulent transport in stellar radiative regions.

6 ENERGETICS OF THE INSTABILITIES

6.1 Derivation of the energy equations and
evaluation for linear modes

In this section we analyse the energetics of the instabilities
in our model. This helps identify the physical mechanisms
and energy sources that drive the various instabilities and
quantify the role of magnetic fields. In order to derive the
total energy equation we must first calculate equations that
govern the different types of energy in our system, namely,
kinetic, thermal/potential and magnetic. We start with the
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(a) Scrit

(b) |k|

(c) θk

Figure 12. Critical value of S for instability (top), and the cor-
responding wavevector magnitude (middle) and orientation (bot-
tom), for B0 = 0.1, 1 and 10, with S = 2,Pr = 10−2, N2 = 10,
Pm = 0.1, for different rotation profiles (values of ϕ) at latitude
Λ + ϕ = 30◦. For ϕ > 0 there is instability for any S > 0 for
B0 ̸= 0, consistent with results obtained in § 3, due to the opera-
tion of the MRI (shown in red). This instability prefers arbitrarily
small wavenumbers. For ϕ < 0, the instability is similar to the
hydrodynamic GSF instability (shown in blue; cf. Fig. 6 in paper
3), and exhibits a preferred k ∼ d. The magnetic field weakens
operation of the GSF instability for ϕ < 0.

equations governing the evolution of perturbations given by
Eqs. 11–16. To obtain volume-averaged energy equations we
take the product of the relevant equation and quantity there
(scalar product of Eq. 11 with u and 13 with B for kinetic and
magnetic energies, and multiplication of 12 by θ for thermal
energy) and volume average. We denote volume averages by
⟨·⟩ where ⟨·⟩ = 1

V

∫∫∫
·dV , where V is the volume of our box,

which for linear modes is taken to be a single wavelength
of the dominant mode. We define the kinetic, magnetic and
thermal energies of our perturbations according to (assuming
N 2 > 0)

K =
1

2
⟨|u|2⟩, M =

1

2
⟨|B|2⟩, P =

1

2
⟨ |θ|

2

N 2
⟩. (57)

For the kinetic energy equation we obtain

∂tK = −⟨u · (u · ∇)U0⟩+ ⟨θu · eg⟩+ ν⟨u · ∇2u⟩
+ ⟨u · (B0 · ∇)B⟩. (58)

Note that ⟨u ·(u ·∇)u⟩ = ⟨u ·(U0 ·∇)u⟩ = ⟨u ·∇p⟩ = 0 using
the chain rule, incompressibility and the divergence theorem
(applying periodic boundary conditions), and noting that the
Coriolis force does no work (u · (2Ω × u) = 0). We then
substitute U0 = −Sxey to yield

∂tK = S⟨uxuy⟩+⟨θu ·eg⟩+⟨u ·(B0 ·∇)B⟩+ν⟨u ·∇2u⟩. (59)

This indicates that the kinetic energy of perturbations
can grow by extracting kinetic energy from the shear
flow/differential rotation (first term), from conversions of
thermal to kinetic energy (second term), from conversions
of magnetic to kinetic energy (third term), and that it is dis-
sipated by viscosity (fourth term, which can be shown to be
negative definite through an integration by parts).

In a similar manner we can obtain the magnetic energy
equation, noting that ⟨B · (u · ∇)B⟩ = ⟨B · (U0 · ∇)B⟩ = 0,
giving

∂tM = ⟨B · (B0 · ∇)u⟩ − S⟨BxBy⟩+ η⟨B · ∇2B⟩. (60)

This indicates that magnetic energy of perturbations can
grow from conversion of kinetic to magnetic energy (first
term), from extracting kinetic energy from the background
shear flow/differential rotation (second term), and that it
is dissipated ohmically (third term; negative definite). Note
that the term ⟨B · (B0 · ∇)u⟩ in Eq. 60 can be shown to be
equivalent with −⟨u · (B0 · ∇)B⟩ in Eq. 59 using integra-
tion by parts, which indicates that these just convert kinetic
to magnetic energy and vice versa, and do not inject total
energy into the system.

The final energy equation that we need to consider is the
one governing thermal energy. We obtain

∂tP = −⟨θu · eθ⟩+ κ⟨θ∇
2θ

N 2
⟩, (61)

using the results ⟨θ(u ·∇)θ⟩ = ⟨θ(U0 · ∇)θ⟩ = 0. This shows
that thermal energy grows through conversion from kinetic
to thermal energy (first term) and that it is dissipated by
thermal diffusion (second term; negative definite). Hence, the
equation for the total energy E = K+M+ P, is

∂tE =S (⟨uxuy⟩ − ⟨BxBy⟩) + ⟨θu · (eg − eθ)⟩

+ ν⟨u · ∇2u⟩+ η⟨B · ∇2B⟩+ κ⟨θ∇
2θ

N 2
⟩. (62)

This indicates that the total energy of perturbations can
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grow only via extraction of kinetic energy from the shear
flow/differential rotation into perturbation kinetic or mag-
netic energies (first two terms), or via the baroclinic term
that extracts potential energy from the basic state into ki-
netic and thermal energies (last term on first the line), if and
only if these contributions exceed the sum of the viscous,
ohmic and thermal dissipations (terms on the bottom line).

We can use these results to analyse the energy sources
contributing to the instabilities described by Eq. 17. To do
this, we calculate each of the terms in these energy equa-
tions for a single axisymmetric Fourier mode with a wavevec-
tor k = (kx, 0, kz). This can be used to understand better
both the driving forces of the instability and the momentum
transporting properties of the instability. We first express
⟨uxuy⟩ for a single mode with ux = ℜ [ûx exp (ik · x+ st)]
and uy = ℜ [ûy exp (ik · x+ st)]. Using the properties of com-
plex numbers, ℜ(A)ℜ(B) = 1

2
ℜ(AB+AB∗), where ∗ denotes

the complex conjugate, this can be written

⟨uxuy⟩ =
1

2
⟨ℜ

(
ûxûy exp (2st+ 2ik · x) + exp(2ℜ[s]t)ûxû

∗
y

)
⟩

=
1

2
exp(2ℜ[s]t)ℜ(ûxû

∗
y), (63)

upon applying the periodic boundary conditions (thereby
eliminating the first term on the top line).

For a single linear mode we can use Eqs. 11–16 to relate
ûy to ûx (and similarly for all other variables) to obtain

ûy =
sη

sνsη + ω2
A

(
S
(
1 +

ω2
A

s2η

)
− 2Ω

(
cΛ +

kx
kz

sΛ

))
ûx,

(64)

and we also note that ûz = −(kx/kz)ûx. Substituting this
into Eq. 63, and using ℜ[ûxû

∗
y] = ℜ[û∗

xûy], gives the concise
form for the xy-component of the Reynolds stress

⟨uxuy⟩ =
|ûx|2

2
ℜ

sη
(
S(1 + ω2

A
s2η

)− 2Ω(cΛ + kx
kz

sΛ)
)

sνsη + ω2
A

 .

(65)

We also have

B̂y =
iωA

sη

[
ûy − S

sη
ûx

]

=
iωAûx

sη

− S
sη

+
S
(
1 +

ω2
A

s2η

)
− 2Ω

(
cΛ + sΛ

kx
kz

)
sν +

ω2
A

sη

 ,

(66)

along with B̂z = −(kx/kz)B̂x, which allows the xy compo-
nent of the Maxwell stress for a single mode to be written

⟨BxBy⟩ =
1

2
ℜ[B̂xB̂

∗
y ] exp(2ℜ[s]t) (67)

= ℜ

ω2
A|ûx|2

2s2η

− S
sη

+
S
(
1 +

ω2
A

s2η

)
− 2Ω

(
cΛ + sΛ

kx
kz

)
sν +

ω2
A

sη


 .

(68)

The third and final term that can inject energy into the
system is

⟨θu · (eg − eθ)⟩ = ⟨θ[ux(cϕ − cΓ) + uz(sϕ − sΓ)]⟩, (69)

which is essentially a measure of the extent that baroclin-
icity (i.e. non-coincidence of constant density and pressure
surfaces) drives the instability. We use

θ̂ = −N 2

sκ

(
cΓ − kx

kz
sΓ

)
ûx, (70)

along with incompressibility to write:

⟨θu · (eg − eθ)⟩ (71)

=
1

2
ℜ
[
N 2

sκ

(
kx
kz

sΓ − cΓ

)(
(cϕ − cΓ)−

kx
kz

(sϕ − sΓ)

)]
|ûx|2.

Note that this term vanishes when eg = eθ, and is thus unim-
portant when sΛ = 0 (no differential rotation along the rota-
tion axis), and it is small compared to the other terms in the
strongly stratified limit for which N 2 ≫ 2ΩSsΛ.

The kinetic energy is

K =
1

2
⟨|u|2⟩ = 1

4
[|ûx|2 + |ûy|2 + |ûz|2] exp(2ℜ[s]t), (72)

which can be expressed in terms of |ûx|2 using the above
results. The magnetic energy is

M =
1

2
⟨|B|2⟩ = 1

4

[
|B̂x|2 + |B̂y|2 + |B̂z|2

]
exp 2ℜ[s]t, (73)

which can also be expressed in terms of |ûx|2 using the fol-
lowing expressions:

|B̂x|2 =
ω2
A

|sη|2
|ûx|2, (74)

|B̂y|2 = − ω2
A

|sη|2

∣∣∣∣∣∣∣−
S
sη

+
S
(
1 +

ω2
A

s2η

)
− 2Ω

(
cΛ + sΛ

kx
kz

)
sν +

ω2
A

sη

∣∣∣∣∣∣∣
2

|ûx|2,

(75)

|B̂z|2 =
ω2
A

|sη|2

(
kx
kz

)2

|ûx|2. (76)

The thermal energy for a single mode can be expressed as

⟨ |θ|
2

2N 2
⟩ = N 2

4|sκ|2

(
cΓ − kx

kz
sΓ

)2

|ûx|2. (77)

Using these expressions we can determine the energetic
contributions to the growth rate for a single Fourier mode
by noting that

2ℜ[s] = ∂t ln E =
1

E ∂tE , (78)

where the right hand side contains all six terms in Eq. 62
and is independent of the mode amplitude since |ûx|2 cancels
in both the numerator and denominator. This can also be
used as a check of our codes by ensuring that the growth
rate ℜ[s] is predicted to close to machine precision by using
the linear relations between the components that we have
just derived. Once this has been confirmed we can compute
the contribution of each of the first three possible driving
terms on the right hand side of Eq. 62 to the growth rate to
determine whether a given instability is driven by Reynolds
stresses, Maxwell stresses or the baroclinic term.

6.2 Numerical analysis of linear mode energetics

6.2.1 Unstable modes energetics: variation with B0

We present results from computing the contributions to the
growth rate from the three source terms on the right hand
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Figure 13. Energetic contributions to instability on the (kx, kz)-plane for Λ = −30◦ and ϕ = 30◦, B0 = 1, 2.5 and 5 (increasing in
columns as we go from left to right) all with S = 2, N2 = 10, Pr = 0.01 and Pm = 0.1. Top row: growth rate. Second row: Reynolds stress
contribution. Third row: Maxwell stress contribution. Fourth row: baroclinic contribution. Stable modes with ℜ[s] ≤ 0 are indicated in
white for clarity. MNRAS 000, 1–24 (2024)
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Figure 14. Energetic contributions to instability on the (kx, kz)-plane for Λ = 60◦ and ϕ = −30◦, B0 = 1, 2.5 and 5 (increasing in
columns as we go from left to right) all with S = 2, N2 = 10, Pr = 0.01 and Pm = 0.1. Top row: growth rate. Second row: Reynolds stress
contribution. Third row: Maxwell stress contribution. Fourth row: baroclinic contribution. Stable modes with ℜ[s] ≤ 0 are indicated in
white for clarity.MNRAS 000, 1–24 (2024)
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side of Eq. 62. In particular, we determine the contributions
to the growth rate from the Reynolds stress, Maxwell stress,
and baroclinic driving terms in Eqs. 65, 68 and 71 as a visual
tool to understand better the mechanisms driving the various
instabilities, as well as the role of the magnetic field. Each of
these are divided by 2E in order to compute their contribution
to σ for the reason explained in Eq. 78. All of the figures
in this section use our standard choice of parameters, Pr =
10−2, N2 = 10 and S = 2 unless stated otherwise.

Figs. 13 and 14 show pseudocolour plots for various Λ and
ϕ of the growth rate (first row) along with the contributions
to it from Reynolds stresses (second row), Maxwell stresses
(third row) and baroclinic source terms (fourth row) on the
(kx, kz)-plane, for various magnetic field strengths B0 = 1, 2.5
and 5. Rows two to four represent the first three terms in
Eq. 62, the sum of these, together with the three diffusive
terms (not plotted) in Eq. 62 has been verified to match the
growth rate σ to machine precision. In contrast to Figs. 3–5
they use a linear colour scale since the various contributions
plotted can take either sign, as we observe in these figures.
Overall, these figures allow us to explore how variations in
field strength for (B0 = 1, 2.5, 5) and rotation profile (through
Λ and ϕ) alter the instabilities whilst simultaneously probing
which energy source terms are responsible.

In Figs. 13 we first analyse the configuration at the equa-
tor with mixed shear (Λ = −30 ◦, ϕ = 30◦) explored earlier
in Fig. 3. This configuration is GSF unstable in the hydro-
dynamic case and remains unstable for weak fields. Strong
fields tend to inhibit instability for k ∼ 1 and to shrink the
unstable lobes, in addition to changing their orientation. For
B0 ≤ 2.5, Reynolds stresses are the primary drivers of insta-
bility for most (kx, kz), indicating that unstable modes are
primarily driven by extracting kinetic energy from the differ-
ential rotation. As B0 is increased further, Maxwell stresses
play an increasingly important role, until they dominate for
B0 = 5, indicating that shear flow kinetic energy is extracted
and input into perturbation magnetic energy. The different
locations of the peaks in Reynolds and Maxwell stresses – and
the increasingly stabilising effects (negative values shown) of
Maxwell stresses where the Reynolds stresses are maximal
– are consistent with the changes in orientations of the un-
stable lobes as B0 is increased, from initially being between
Ω̂

⊥
and ∇ℓ to become closer to ∇ℓ for the strongest fields.

For this latitude and flow baroclinic driving terms are typi-
cally subdominant, but they still contribute non-negligibly to
driving instabilities for weaker fields. The effect of the field
in reducing the maximum growth rate observed in Fig. 7 is
also confirmed here.

We next look at a case with latitude 30◦ with mixed shear
(Λ = 60◦, ϕ = −30◦) in Fig. 14 as first studied in Fig. 4.
This configuration is GSF unstable hydrodynamically and
remains unstable for weak fields. We saw from Fig. 8 that
the field acts to monotonically stabilise the system with in-
creasing B0, which is consistent with Fig. 14. We again ob-
serve that the primary lobes of instability are driven primarily
by Reynolds stresses for B0 ≤ 2.5, but become increasingly
driven by Maxwell stresses for stronger fields. We also ob-
serve the positive Reynolds stress contributions are mainly
confined to within the hydrodynamically unstable wedge de-
lineated by the lines Ω̂

⊥
and ∇ℓ, and are maximal approxi-

mately halfway between these. The increasing importance of

Maxwell stresses and the shift in orientation of the lobes indi-
cates the transition in the dominant instability from GSF to
MRI. Notice that the Maxwell stress generally has a preferred
wavevector magnitude, evident by the darkest red (most un-
stable) modes being located in the centre of the lobes. We
also observe the unstable region shrinking as the MRI en-
ables instability for smaller and smaller k for appropriately
oriented modes. The baroclinic term is unimportant for the
primary lobes, as is indicated by the bottom panels.

The secondary lobes evident in Fig. 14 are hydrodynam-
ically unstable oscillatory modes within the wedge defined
by eg and eθ. The bottom panels of this figure confirm
that these modes are baroclinically driven since σ approxi-
mately equals its baroclinic contribution, with Reynolds and
Maxwell stresses playing negligible roles in driving them. The
growth rates and unstable mode wavevectors are mostly un-
affected by the magnetic field, except that these become
weakly destabilised magneto-inertial-gravity waves rather
than inertia-gravity waves when the field is sufficiently strong.

We have found similar trends as B0 is varied are found for
Λ and ϕ that are adiabatically Solberg-Høiland unstable in
the hydrodynamic case, and for cases at the poles that are
hydrodynamically adiabatically stable.

6.2.2 Fastest growing mode energetics: variation with B0

We next turn to analyse how the energetic contributions vary
with B0 for the fastest growing modes, obtained by optimis-
ing over kx and kz for each case. Results are shown in Fig. 15
for various latitudes and differential rotations. We study both
Pm = 1 and Pm = 0.1 in order to investigate the role mag-
netic diffusivity plays in these results.

Panel (a) of Fig. 15 analyses a case with ϕ = 60◦, Λ = −30◦

that is adiabatically Solberg-Høiland unstable in the hydro-
dynamic case. We find the growth rate in this case is essen-
tially independent of B0, as predicted from Figs. 6 and 8.
The primary result of changing B0 is to decrease the range
of unstable kx and kz as we have confirmed in Fig. 5. This
case is driven by the Reynolds stress for all B0 considered,
since the red symbols provide a larger contribution to the
total growth rate, for both Pm plotted. Magnetic diffusion
does not play an important role here, confirmed by the negli-
gible role of Pm. The baroclinic driving term is the secondary
contributor to instability for the smaller B0, but it appears
that it may be superseded for B0 ≳ 25 by Maxwell stresses.
There is a jump from one unstable mode to another around
B0 = 12 where baroclinic and Maxwell stress terms approxi-
mately balance, where the k and θk values instantly switch.

Panel (b) of Fig. 15 analyses a case with cylindrical differ-
ential rotation (Λ = 0, which is neutrally hydrodynamically
GSF stable for all latitudes with S = 2. This case is signifi-
cantly destabilised by even weak magnetic fields as we have
seen in Figs. 8, 9 and 10, due to the MRI. This instability is
driven by an approximately equal combination of Reynolds
and Maxwell stresses, which perfectly coincide for large B0.
This can be termed “Alfvénisation” of the instability for suf-
ficiently strong fields. The complete lack of any baroclinic
driving is evident in this figure, and is also observed in panel
(f) which also has Λ = 0, as is expected for any cylindrical
rotation profile.

Panel (c) probes instabilities at the poles by considering
ϕ = 60◦ and Λ = 30◦. Figs. 5 and 10 indicated that this lati-
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(a) (b)

(c) (d)

(e) (f)

Figure 15. Energetic contributions to instability for the fastest growing mode (optimised over kx and kz) as a function of the magnetic
field strength B0 for various Λ and ϕ cases. These show the growth rate, and the contributions to it from Reynolds stresses (⟨uxuy⟩),
Maxwell stresses (⟨bxby⟩) and baroclinic source terms (⟨θu · (eg − eθ)⟩ against field strength B0. All panels show Pm = 0.1 and Pm = 1,
and the other parameters are Pr = 10−2, N 2 = 10 and S = 2.
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tude is widely unstable to adiabatic magnetic instabilities, in
stark comparison to the hydrodynamic results Dymott et al.
(2023), which found no adiabatic instability there. This in-
stability is again the MRI, and it is driven by an approxi-
mately equal balance of Reynolds and Maxwell stresses indi-
cating “Alfvénisation” once again. The growth rate increases
by around 35% between B0 = 0 and B0 = 5, after which
increases in B0 lead to only marginal increases in σ.

Panel (d) explores a shellular rotation profile with ϕ = 0
and Λ = 60◦. These cases were explored hydrodynamically in
paper 2. This figure indicates that the instability is initially
driven almost entirely by Reynolds stresses when B0 ∼ 0, but
Maxwell stresses dominate for B0 ≳ 5. The introduction of
magnetic fields weakens the instability and reduces σ (after
a small rise for B0 ∼ 1) over the B0 = 0 case. A plateau is
reached for σ by B0 ≳ 15, where the instability is primarily
driven by Maxwell stresses. Once again, the baroclinic driving
term is very weak in this case for any B0.

Panel (e) shows the behaviour of the fastest growing mode
from the parameters of Fig. 14 with ϕ = −30◦ and Λ = 60◦.
As B0 is increased σ is drastically reduced. Up to B0 ≈ 5 for
Pm = 0.1, and B0 = 3 for Pm = 1, Reynolds stresses are the
dominant contributor to the growth rate, but as the growth
rate decreases with increasing field strength Maxwell stresses
become the dominant contributor with these lines converging
towards each other. We may achieve “Alfvénisation” again for
sufficiently large B0, but this is not observed by B0 = 25. As
was observed in Fig. 4 the Pm = 1 case is consistently more
unstable than the Pm = 0.1 case, however as the growth rate
tends to zero this difference becomes marginal.

In this section we have analysed the unstable mode ener-
getics as B0, Pm and the properties of the differential ro-
tation were varied. We have found that the fastest grow-
ing modes are always driven predominantly by a combina-
tion of Reynolds and Maxwell stresses for non-zero B0 and
that baroclinic driving is negligible except for the subdomi-
nant secondary lobes. For strong enough magnetic fields, in
many cases in which the MRI operates, the contributions of
Reynolds and Maxwell stresses equalise. Overall, these results
confirm that even a weak magnetic field can drastically alter
the stability of differentially rotating flows in stellar radiation
zones.

7 APPLICATIONS TO THE SUN AND RED
GIANT STARS

We now turn to estimate parameter values for the solar
tachocline as a potential application of this work. Recall that
we defined our lengthscale d as

d =
( νκ

N 2

) 1
4
, (79)

since this describes the scales of the dominant hydrodynamic
GSF modes. In the solar tachocline (e.g. Gough 2007; Ca-
leo et al. 2016), we find ν = 2.7 × 101cm2s−1, κ = 1.4 ×
107cm2s−1, hence Pr = 2× 10−6 and N = 8× 10−4s−1. This
produces a length scale3 d ≈ 49.3m. The linear GSF modes
thus have very short length-scales approx 10−5 times smaller

3 Please note the unfortunate typo in paper 1, where this was
written as km instead! No other values in paper 1 need modifying

than the tachocline thickness. The dimensional wavenumber
kdim = k/d, using our dimensionless wavenumber k. Note
that η = 4.1 × 102cm2s−1 in the tachocline, so Pm = 0.065
and Pr/Pm = 3× 10−5 there. Hence, we are in the regime of
rapid thermal diffusion relative to viscous and ohmic diffusion
in the tachocline, as we discussed in § 3.3 and 3.3.2.

The magnetic field strength and structure in the tachocline
is highly uncertain. Nevertheless, any poloidal magnetic field
is probably in the range 0.5G to 5kG (e.g. Mestel & Weiss
1987, and we are not aware of substantially stronger sub-
sequent constraints). The field there is likely to be mostly
toroidal, but only poloidal fields enter our stability analysis
for axisymmetric modes. The arguments of Gough & McIn-
tyre (1998) for the maintenance of the tachocline also suggest
a minimum poloidal field of 1 G is required there.

Our dimensionless magnetic field B is written in Alfvén
speed units; therefore it has units dΩ where Ω = 2π/Prot,
and Prot = 27 days is the Sun’s mean rotation period. The
corresponding physical magnetic field magnitude Bdim from
the dimensional Alfvén speed VA = Bdim/

√
µ0ρ

Bdim = B0dΩ
√
µ0ρ,≈ 2.1× 10−6B0 T ≈ 0.021B0 G, (80)

using Ω = 2.7 × 10−6s−1 (implying N 2/Ω2 ≈ 8.7 × 104),
ρ = 210 kgm−3 and µ0 = 4π × 10−7 in SI units. This means
that a field of 1 G corresponds to a dimensionless B0 ≈ 46 in
our units if d is the relevant length-scale. Note that d was de-
fined based on the diffusive hydrodynamic GSF modes, and
we have found the MRI to potentially have much larger wave-
lengths. However, the small length scales which GSF modes
prefer does make them very vulnerable to even a rather weak
magnetic field.

On the other hand if we want to consider a field of 1 kG,
this requires B0 = 4.6× 104 in dimensionless units, which is
much larger than we have so far considered here. The fields we
have primarily explored in this work are at the weaker end,
with B0 ≲ 25, corresponding to fields weaker than approxi-
mately 0.5 G in the tachocline. This choice was partly made
to permit us to explore the modification of hydrodynamic dif-
fusive rotational instabilities by a weak field, and was partly
made because we found that for larger B0 the GSF mode is
primarily stabilised and the dominant instability by far is the
MRI.

Motivated by the values in the solar tachocline, we com-
pute the linear growth rates, wavenumbers and orientations
numerically and display them on Fig. 16 at a latitude of 30◦

for a moderately strong field with B0 = 103 for the solar-
like values S = 0.2, Pm = 0.05 and Pr = 10−6 (so that
Pr/Pm = 2 × 10−5). We consider three different values of
N2 ∈ [10, 103, 105] to account for the variation of values in the
solar radiation zone as we approach the radiative-convective
boundary. Deep down, the higher value is appropriate (and
corresponds to the value in Gough 2007), but N2 passes
through zero as the convection zone is approached, motivat-
ing the smaller values we consider here (see e.g. Fig. 1 in
Barker & Ogilvie 2010). We observe that MRI operates for
ϕ > 0 with modest growth rates σ ∼ 0.1 and k ∼ 0.0005 (cor-
responding to wavelengths of order 600 − 60, 000 km, much
smaller than the tachocline thickness), and that it is not

and slightly different numbers were used from stellar models for
the various parameters there than the ones we quote here.
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affected by variations in N2. This is because the unstable
modes orient themselves to avoid doing work against gravity
such that b ∼ 0. On the other hand, the instabilities for ϕ < 0
are substantially modified by varying N2. These instabilities
are GSF modes inhibited by magnetic tension. For N2 = 105,
relevant for deeper parts of the solar tachocline and radiative
interior, GSF is eliminated by the magnetic field. This agrees
with some of the conclusions of Caleo et al. (2016); Caleo
& Balbus (2016). However, closer to the radiative/convective
interface in the tachocline region itself, our smaller values of
N2 are appropriate. For N2 = 10 and 103, the GSF instability
operates but with a much weaker growth rate than the MRI
modes in operation when ϕ > 0. Fig. 16 suggests that MRI
may be more important than GSF for turbulent transport in
the solar radiative interior whenever ϕ > 0, but that more
weakly growing GSF modes could operate for local rotation
profiles with ϕ < 0.

In the core of red giant stars, whose core-envelope differen-
tial rotations remain poorly understood, as considered in pa-
per 1 and using the numbers there, d ∼ 100m, Ω ∼ 10−7s−1.
This produces Bdim ∼ 1.12B0

√
ρ/105gcm−3 G. Hence in

that problem Bdim ∼ B0 G in the cores of red giant stars.
Since there have been constraints on fields in these from as-
teroseismology of order 40 to 610 kG (Deheuvels et al. 2023),
this suggest we should consider B0 ≳ 103 in red giant stars
also. Hence, MRI is expected to be more important than GSF,
depending on the rotation profile (particularly for ϕ > 0), but
perhaps not for ϕ < 0.

8 CONCLUSIONS

We have presented a comprehensive theoretical analysis of lo-
cal diffusive instabilities of differential rotation in magnetised
radiation zones of stars and planets, building upon the hydro-
dynamical studies of Barker et al. (2019, 2020); Dymott et al.
(2023). Understanding the properties of these instabilities,
and ultimately their nonlinear behaviour, is essential because
they have been proposed to play important roles in angular
momentum transport and chemical mixing in stars (e.g. Ca-
leo et al. 2016; Aerts et al. 2019), and they may even play a
role in the solar dynamo (Parfrey & Menou 2007; Vasil et al.
2024), but many aspects of them are currently very poorly
understood. Our focus has been on the effects of a poloidal
magnetic field on the properties of linear axisymmetric insta-
bilities of differential rotation, which are governed by a quin-
tic dispersion relation first derived by Menou et al. (2004).
We have performed a detailed analysis of the dispersion re-
lation, firstly for non-diffusive instabilities, reproducing prior
work on the stratified MRI (e.g. Balbus 1995), before com-
prehensively analysing diffusive instabilities in various limits
analytically and numerically (see also Caleo et al. 2016; Caleo
& Balbus 2016).

In strongly stably stratified regions of stars, the fastest
growing mode displacements are along stratification (i.e. ap-
proximately spherical) surfaces and correspond with opera-
tion of the MRI. However, rapid thermal diffusion can elimi-
nate the stabilising effects of buoyancy if Pr/Pm and Pr are
sufficiently small. In this limit MRI operates and can change
the properties of the unstable modes depending on the differ-
ential rotation. We have obtained new analytical and numer-
ical results on the various instabilities in this triply-diffusive

system as a function of the differential rotation profile and
magnetic field strength.

Our analytical and numerical results have highlighted that
even a weak magnetic field can considerably modify the lo-
cal instabilities of differentially rotating flows (e.g. Balbus &
Hawley 1998, and many prior works). We have found that
for differential rotations with (angle from the local angular
velocity gradient to the effective gravity direction) ϕ > 0
in the northern hemisphere (and vice versa in the south-
ern hemisphere because the relevant parameter is the sign
of βϕ), MRI may dominate over the magnetic modification
of hydrodynamic GSF instabilities. However, for ϕ < 0 there,
hydrodynamic GSF modes could still be important though
they are weakened by magnetic tension for moderately strong
fields. We found that even weak fields destabilise hydrody-
namically stable regions in parameter space, particularly for
nearly cylindrical differential rotation profiles.

We have analysed in detail the properties of axisymmetric
modes, including how the growth rates and wavevectors de-
pend on the strength of the magnetic field, magnetic Prandtl
number Pm, and local differential rotation profile. We have
analysed in detail the energetics of the various instabilities in
our system, first by deriving the energy equation and then by
evaluating the various source terms for linear axisymmetric
modes. These consist of Reynolds stresses, Maxwell stresses
and baroclinic driving terms. We find that the MRI is typ-
ically driven by Reynolds and Maxwell stresses in approxi-
mately equal proportions (so-called “Alfvénisation”) in a wide
range of cases.

We believe that it is important to set up a meaningful
time-independent magnetic equilibrium to properly analyse
MHD instabilities. We take a different viewpoint to many
prior works that attempted to model arbitrary field configu-
rations without ensuring Ferraro’s law of isorotation was sat-
isfied (e.g. Balbus & Hawley 1994; Menou et al. 2004; Menou
& Le Mer 2006; Parfrey & Menou 2007; Caleo et al. 2016).
In our model we ensured our basic state was an equilibrium
state and verified the local analogue of Ferraro’s law of isoro-
tation. This is analogous to the original works of Goldreich &
Schubert (1967); Fricke (1968) having an additional degree of
freedom because they ignored the constraint of thermal wind
balance (e.g. Acheson & Gibbons 1978; Busse 1981). Simi-
lar issues have also plagued studies of the effects of magnetic
fields on the vertical shear instability in astrophysical discs
(e.g. Urpin & Brandenburg 1998; Latter & Papaloizou 2018,
in which the latter authors take the same viewpoint as us).

Future work should explore the nonlinear evolution of the
instabilities we have analysed here (building upon Barker
et al. 2019, 2020; Dymott et al. 2023; Tripathi et al. 2024), as
well as the role of compositional gradients on both the linear
(Knobloch & Spruit 1983) and nonlinear properties of this
problem. Further global simulations tailored to study these
instabilities would also be worthwhile.
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Figure 16. Properties of the fastest growing modes for tachocline parameter values at a latitude β = Λ+ϕ = 30◦. We assume B0 = 1000,
S = 0.2, Pm = 0.05, Pr = 10−6, and explore N2 ∈ [10, 103, 105]. Note the growth rate is on a log scale, because for ϕ > 0 we get MRI
that grows much faster than the GSF modes that may exist for ϕ < 0.
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